2 Can p - adic integrals be computed ?
نویسنده
چکیده
This article gives an introduction to arithmetic motivic integration in the context of p-adic integrals that arise in representation theory. A special case of the fundamental lemma is interpreted as an identity of Chow motives.
منابع مشابه
T / 0 20 52 07 v 2 4 D ec 2 00 2 Can p - adic integrals be computed ?
This article gives an introduction to arithmetic motivic integration in the context of p-adic integrals that arise in representation theory. A special case of the fundamental lemma is interpreted as an identity of Chow motives.
متن کاملar X iv : m at h / 02 05 20 7 v 1 [ m at h . R T ] 1 9 M ay 2 00 2 Can p - adic integrals be computed ?
This article gives an introduction to arithmetic motivic integration in the context of p-adic integrals that arise in representation theory. A special case of the fundamental lemma is interpreted as an identity of Chow motives.
متن کاملHigher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$
Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...
متن کاملGross–Stark units and p-adic iterated integrals attached to modular forms of weight one
This article can be read as a companion and sequel to [DLR], which proposes a conjectural expression for the so-called p-adic iterated integrals attached to a triple (f, g, h) of classical eigenforms of weights (2, 1, 1). When f is a cusp form, this expression involves the p-adic logarithms of so-called Stark points: distinguished points on the modular abelian variety attached to f , defined ov...
متن کاملPhysics as Generalized Number Theory: p-Adic Physics and Number Theoretic Universality
Physics as a generalized number theory program involves three threads: various p-adic physics and their fusion together with real number based physics to a larger structure, the attempt to understand basic physics in terms of classical number fields (in particular, identifying associativity condition as the basic dynamical principle), and infinite primes whose construction is formally analogous...
متن کامل